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Prediction of stress-strain relationships 
in polymer composites 
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A unified theory is developed to predict the elastic moduli, yield stress, and stress-strain curve of polymer 
composites. In addition to the elastic moduli of filler and matrix, two more constants, related to the hole 
and activation volume, are needed as input parameters to describe the nonequilibrium mechanical properties 
of composites. This paper is a generalization of our earlier composite theory to incorporate the effect of 
structural relaxation. We have derived the compositional dependent relaxation time, and have applied it 
to understand the deformation kinetics, and to determine the compressive stress-strain behaviour as a 
function of the filler concentration, strain rate, and temperature. The type of stress applied to a system 
plays an important role in nonlinear deformations. We shall discuss uniaxial compression, which is not 
sensitive to cracks, and gives the characteristics of the pure material. As the volume fraction of filler 
increases, both the effective elastic modulus and yield stress increases. However, the system becomes more 
brittle at the same time. 
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I N T R O D U C T I O N  

The importance of polymer composites arises largely 
from the fact that such low density materials can have 
unusually high elastic moduli and tensile strength1-4. For  
most part, the tensile properties have been quite 
adequately dealt with by utilizing the theory of elasticity. 
With the new demands for materials to survive in severe 
environment of high temperature, compression and strain 
rate, deformations from elasticity to viscoelasticity and 
plasticity do occur as the loading and environmental 
conditions vary. Models built on the basis of the theory 
of elasticity for the brittle tensile properties have to be 
modified, so that these three kinds of deformations can 
be described. In contrast to tension, a stress-strain curve 
measured in uniaxial compression is not significantly 
affected by cracks 1, and tends to be characteristic of the 
pure material. 

The purpose of this paper is to seek a unified 
understanding and approach to the composite elastic 
modulus, yield stress, and stress-strain curve of polymers 
dispersed with particles in uniaxial compression. Pre- 
vious works on amorphous polymers have shown that 
segmental mobility and structural relaxation play an 
important role in determining the mechanical proper- 
ties 5-a, and the yield behaviour is closely related to the 
nonlinear viscoelastic phenomenon 9''°. To extend these 
to the kinetics of deformation of composite systems, a 
pertinent rule of mixtures for the compositional depen- 
dent relaxation times has to be derived. This will provide 
the basis for calculating the compressive stress-strain 
behaviour of composite systems as a function of the filler 
concentration, strain rate and temperature. 

C O M P O S I T E  M O D U L U S  

Consider the composite to be a disordered system of 
randomly distributed particles in a polymer matrix. 

The interaction between filler particles is treated by 
a mean field approximation, and the system as a 
whole is macroscopically homogeneous. Effective 
Young's modulus Eo is given by 1L12 

1 I / k ' / k 2  - 1 I-2 # 1 / / 2 2  - -  13(i) (1) 

where E 2 refers to Young's modulus of the polymer, 
is the volume fraction of filler, k = E/3(1 - 2v) is the bulk 
modulus, # = E/2(1 +.v) is the shear modulus, v is the 
Poisson ratio, and the subscripts 1 and 2 identify the 
filler and matrix; 

1 + v 2 (2) 
D = 1 + ( k , / k  2 - 1)(1 - O) 3(1 - v2) 

4 - 5v 2 
G = 1 + 2(/21//22 - 1)(1 -- ~)  - -  (3) 

15(1 - v2) 

The use of the above equations is shown in F i g u r e  I 
where the calculated and measured '3 Young's modulus 
of a crosslinked epoxy resin filled with silica (SiO2) 
particles are compared. The elastic properties of the filler 
and matrix a r e "  

E 1 = 21.2E 2 v 1 = 0.22 
(4) 

E 2 = 1 7 x  103kgcm -2 v 2=0.35  

In the rest of the paper, the composite system with the 
properties given by equation (4) will be used to illustrate 
the theoretical development. Glassy polymers are not in 
thermodynamic equilibrium. The change in the nonequi- 
librium glassy state and its relaxation define the visco- 
elastic response s . The relaxation modulus can, in general, 
be written as 

E ( t )  = E ~  + (E  o - -  Eo~)W( t )  (5) 

where t is the time and Eo, mentioned in equation (1), 
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is the unrelaxed modulus which is much greater than the 
relaxed modulus (E~) in the glassy state. The normalized 
relaxation function has the form 

V(t) = e x p [ - ( t / z ) ~  0 < fl ~< 1 (6) 

where z is the effective relaxation time and fl is a constant 
defining the shape of relaxation spectrum. The above 
equation has been successfully utilized in the past to 
describe the mechanical properties of amorphous and 
crosslinked polymers 5'14'1s. During the study, we have 
found the important differences 14'15 between Williams- 
Watts' equation for dielectric relaxation 16 and equation 
(6). Instead of being empirical constants, both z and fl 
are functionally related and molecularly interpreted ~7. 
In addition to temperature (T) and the nonequilibrium 
glassy state (6), the origin of physical ageing, we now 
expect that z is also a function of the filler concentration. 

RELAXATION TIME 

In order to understand the kinetic mechanism of 
deformation of a composite, one needs to know a 
pertinent rule of mixtures that defines the compositional 
dependent relaxation time. Consider the lattices for 
binary mixtures which consist of the number of lattice 
sites 

Ns(t ) = ns(t ) + Xsnxj (j = 1, 2) (7) 

where n s and nxj are the number of holes and polymer 
molecules, respectively, and x s is the number of monomer 
segments for the j th  material. Each lattice site occupies 
a single lattice cell with volume v s. Blends of two-phase 
materials are generally expected to exhibit no volumetric 
deviation from an additive relationship: 

V - -  I ) I N  1 + 0 2 N  2 ~ oN : o(n + x N )  (8) 

This leads to the effective number of holes 

n = (V~nx/O) + (o2n2/v) 
and the free volume fraction of the blend 

f = n / N  = f2 + (fz - f2)O (9) 

where the free volume fractions f j  = n J N ,  the volume 
concentrations • i = v j N j / v N  and • = • 1 = 1 - • 2 .  

In a single phase material, the relaxation time is 
inversely proportional to the mobility of chain segments, 
and is related to the free volume fraction by the Doolittle 
equation xs 

In zj = B J f  s (j = 1, 2) (10) 

where B s is a constant. Equations (9) and (10) give 

ln(z /z2)  = B / f  - B 2 / f  2 

= [(B - B2) -- B 2 ( f l / f  2 -- 1)0]/[f2(1 -- O) + fz 0 ]  
(11) 

When • ~ 0 ,  z/z2 approaches one. This requires 
B = B2. Since fl in equation (6) is inversely proportional 
to B 5"15, this suggests that the distribution of relaxation 
times may not be affected by the presence of fillers. 

In the case of filled polymers, equation (11) can be 
further simplified by assuming the free volume of fillers 
( f l )  to be zero. Thus, we obtain 

log(z /z2)  -- (1/2.303) ln(a~) = CO/(1 -- 0)  (12) 

where C = B/2.303f2  and a ,  is the concentration depen- 
dent shift factor. The above equation is obtained by 
considering a disordered system which contains not only 
filler particles, but holes in a polymeric matrix. The 
volume of the system is close-packed and there is no 
interpenetrating of molecules and holes at the interface 
between filler and polymer. The composite relaxation 
time (z) is determined by the motion of holes in a polymer 
matrix 17 constrained by the presence of fillers. Equation 
(12) reveals that a small increase in the filler concentration 
(0) can increase the effective relaxation time by an order 
of magnitude. The dependence of z 2 on the physical 
ageing and temperature for amorphous and crosslinked 
polymers has already been reported elsewhere 5'1s. 

YIELD STRESS 

The relaxation phenomenon discussed in the last section 
is within the linear viscoelastic range. At high stress levels, 
the contribution from the external work done on a hole 
lattice site has to be included in the analysis. By taking 
into account the long range cooperative interaction, the 
external work can, in general, be written as s 

A w  = - troK~u(N/n ) = - (aof~o/f2) (13) 

where a u and Qq are the stress and activation volume 
components, respectively. For  isotropic materials, the 
activation volume tensor has two independent compo- 
nents. These are the bulk activation volumes, which are 
equal to the lattice volume v, and the shear activation 
volume D12. We have determined that v ide2  = 0.121 for 
most polymers s'19. The ratio f lu / f2  in equation (13) 
represents the volume of polymer segments under 
deformation, and is between 1 and 2 orders of magnitude 
larger than the lattice volume. This is consistent with the 
previous studies 19'2°. 

In tension the composite exhibits brittle frac- 
tures 1 1 ' 2 1 ' 2 2 ,  while in compression the filled polymer 
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behaves as a ductile material L~3 with a yield point and 
higher elongation to break. This can be treated as a 
relaxation phenomenon. The activation volume in uni- 
axial compression is found to be 19 

o Ol, o,) .4, 
which is smaller than that in tension or shear. When the 
magnitude of compressive stress is high, the effective 
relaxation time takes the form 

z(r, 6, O, ala) = z2(T, 3)~¢,o~. (15) 

where the nonequilibrium glassy state 6 = fz(t) - f2, and 
the nonlinear stress dependent shift factor 

a ¢ = e x p (  2fzfler,]l°'lllDll~ (16) 

Interestingly, we see a decrease in the effective relaxation 
time in uniaxial compression. 

In the solid state deformation, the nonlinear visco- 
elastic effect is most clearly shown in the yield behaviour. 
The yield occurs when the product of the effective 
relaxation time and the applied strain rate ( ~ = ~ )  
reaches a constant value ~°'23. Using equation (15) and 
replacing [aal] by at, we obtain the compressive yield 
stress: 

e y = A + K  log ~+  1 Z -  O 

where A is a constant and K=4.606f2flRT/~11.  A 
comparison of equation (17) and data at the room 
temperature (23°C), expressed in terms of the compres- 
sive yield stress versus strain rate at different filler 
contents, is shown in Figure 2. The slope gives the value 
of K, and reveals that the activation volume is not a 
function of O. The constant C defines the plots of yield 
stress versus filler concentration in Figure 3. These figures 
give 

K = 105 kg cm -2 C = 3.2 (18) 

for the silica filled epoxy. Experimental data used in 
Figures 1-3 are taken from the same source ~a. Both 
equations (4) and (18) will be needed in calculating the 
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Figure 2 Comparison of the predicted (solid lines) and measured 13 
(points) strain rate dependence of the compressive yield stress at 
different filler concentrations 
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Figure 3 Compressive yield stress v e r s u s  filler concentration at 
different strain rates. Points are experimental data ~3 

stress-strain behaviour. The constant A = 730 kg cm-  2, 
which can be extracted easily from Figure 2, will no longer 
be needed. 

STRESS-STRAIN BEHAVIOUR 

The calculation is now being extended from the elastic 
modulus and yield stress to the stress-strain curve. The 
constitutive equation for stress and strain in uniaxial 
compression is given by the Boltzmann superposition 
integral: 

fo a(t) = E(t - s)b(s) ds (19) 

where E is the compressive relaxation modulus described 
by equations (5), (6), and (15). The subscript 11 for stress 
or strain has been dropped. The strain rate is usually 
kept constant in Instron measurements. Put e = bt, and 
equation (19) becomes 

fo a(e) = E(e - e') de' (20) 

Substituting equations (5), (6) and (15) into equation 
(19), we get the compressive stress-strain relationship 

a(e)=Eo(O) f~exp{-[e ' exp(2"303a(e ' ) /K)] '~de '  
ez2a¢((I)) ] ) 

(21) 

where the compositional dependent E o and a¢ are given 
by equations (I) and (12), respectively. In addition to 
equations (4) and (18), the parameters f l=0.19,  and 
z2=0.711 x 1013s at 23°C are adopted in seeking the 
numerical solution of equation (21). As mentioned earlier, 
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Figure 4 
stress-strain curves in uniaxial compression 
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Dependence of the compressive stress-strain curves on strain 

/~ for the composite system has the same value as that 
for epoxy resins 15. 

The importance of incorporating the effect of nonlinear 
stress, equation (16), in the calculation of equation (21) 

is explained in Figure 4. The curves with square symbols 
include the nonlinear effect, while those with dots do 
not. The calculated nonlinear viscoelastic stress-strain 
properties shown in Fioure 4 resemble the corresponding 
measured curves 13. The effect of strain rate is shown in 
Fioure 5. The compressive stress-strain curves at different 
filler concentrations are plotted in Fioure 6. The yield 
behaviour displayed here not only compares well with 
that in Figure 3, but exhibits the continuous change from 
elasticity to plasticity. As the volume fraction of filler 
increases, the yield stress of the composite system 
increases but, at the same time, the system becomes more 
brittle. 

TEMPERATURE DEPENDENCE 

Temperature has a great deal of effect on the mechanical 
properties of polymer matrix, but not on those of fillers. 
In order to calculate the stress-strain behaviour of a 
composite system, explicit temperature dependent ex- 
pressions are required for the unrelaxed modulus, the 
constants C and K, and the polymer relaxation time z2. 
Young's modulus of epoxy resins 24 is scaled by E2(T) = 
E2(23°C) x (296/T). As a crude first approximation, the 
free volume fraction below the glass transition tempera- 
ture (Tg = 115°C) may be treated as a constant. Therefore, 
C in equation (12) is independent of temperature. Because 
the activation volume is also unaffected by the change 
in temperature 5, equation (17) suggests that K ( T ) =  
K(23°C) x (296/T). This is consistent with reported 
data 25. In the glassy state, the temperature dependence 
of the relaxation time follows an Arrhenius type of 
equation 

z2(T) = zz(23°C)exp[~H-(1/T - 1/296)1 (22) 
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the time scales in which the composite system is measured 
and relaxed. We have derived the composite relaxation 
time by treating the composite as a disordered system of 
randomly distributed particles and holes in a polymeric 
matrix. The effective relaxation time increases with an 
increase in filler concentration, but decreases with an 
increase in uniaxial compression. 

The type of stress applied to a system has little effect 
on the linear viscoelastic relaxation, but becomes very 
important as the stress level increases. The activation 
volume tensor is a key parameter. In the solid state 
deformation, the nonlinear viscoelastic effect is most 
clearly shown in the yield behaviour. Our analysis reveals 
that the compressive activation volume (DI ~) is indepen- 
dent of the filler concentration. Since the filler and matrix 
are not mixed at molecular level, the relaxation spectrum 
(fl) is also found to be independent of composition. This 
greatly simplifies the analysis. The theoretical prediction 
is in good agreement with the experiment. As the volume 
fraction of filler increases, both the effective elastic 
modulus and yield stress increase. However, the system 
becomes more brittle at the same time. Finally, through 
the mechanistic understanding of the structural relaxa- 
tion and deformation kinetics, we have gained a solid 
basis to estimate the effect of temperature on the 
mechanical properties of polymer composites. 

STRAIN, e 

Figure 7 Effect of temperature on the compositional dependent 
stress-strain curves 

where the activation energy AH = 84 kcal mo1-1 for 
epoxy resins 15'24, and R is the gas constant. The 
activation energy below T~ is significantly influenced by 
the physical ageing process s'15 

By utilizing all these expressions in equation (21), the 
effect of temperature on the stress-strain relationships in 
the composite system is shown in Figure 7. Effective 
Young's modulus is not as strongly influenced by 
temperature as the viscoelastic and plastic responses are. 

CONCLUSIONS 

The effective Young's modulus, yield stress, and the 
stress-strain curve of polymers dispersed with particles 
in uniaxial compression have been calculated as a 
function of the filler concentration, strain rate, and 
temperature. In addition to the elastic moduli of filler 
and matrix, two more constants K and C, which relate 
to the activation volume and free volume fraction, 
respectively, are also needed as input parameters to 
describe the equilibrium and nonequilibrium mechanical 
properties. 

The change in the physical mechanism of deformation 
from elasticity, viscoelasticity to plasticity depends on 
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